How to grow your first sample: As capping

Faebian Bastiman

Having a metallic As source offers us the ability to create a very useful protective epilayer: an As cap. Once you have grown a layer you may want to remove the sample from your system and for example transfer it into a neighbouring system or send it to a collaborator for analysis. As soon as you remove the sample from vacuum the surface will of course oxidise. Oxidation cannot be avoided, however if you deposit an As cap of sufficient thickness before you remove the sample only the As will oxidise and your III-V epilayer surface will remain perfectly intact. Once the sample is safely bask inside a vacuum system, one need only heat it to ~300 °C and the As sublimes. A quick look with RHEED will show the original reconstruction is even preserved.

Amazing.

How does one deposit an As cap?

You can deposit an As cap on any surface. In this example I will discuss depositing an As cap on GaAs(100). At the end of your epilayer growth you will typically observe an As-rich (2×4) reconstruction. If you want to know what a reconstruction is see my What is a reconstruction? post. Essentially to deposit a cap all you need to do is fully open the As and turn off the sample heating. However there are a few things to consider:

Firstly, As2 tends to create a better cap than As4, so wherever possible you should use As2.

Secondly, the As cap grows very slowing whilst the substrate is above 100°C and it is preferable to cool the substrate down to 0°C in order to rapidly form a cap.

Thirdly, not only As but every other background species will readily condense onto the substrate at 0 °C including the hydrocarbon, water vapour, oxides and other undesirables lurking inside your vacuum.

In order to ensure the highest purity of your surface, it is a good idea to pre-protect the GaAs by creating an even more As-rich reconstruction than the (2×4). The reconstruction of choice is called a c(4×4). The c(4×4) is simply created by holding the substrate at 500 – 540 °C  in a moderate As flux for several minutes.

Test it yourself. Align the RHEED along the [-110] azimuth so you can see the 4x of the (2×4) shown in Figure 1a and then lower your substrate temperature until the 2x pattern of the c(4×4) appear as shown in Figure 1b. You may be asking yourself why a c(4×4) reconstruction has a 2x pattern. Well if you look closely at the reconstruction in Figure 1b you will see it is not simply a 2x, it is a pair of 2xs. The 2x at the top is out of phase with the 2x at the bottom (i.e. the lines on the RHEED screen do not line up). The 2x at the bottom is in fact exactly half way between the 2x at the top.

As cap v2

Rotate the sample to the [110] azimuth. You will see the exact same pair of 2x reconstructions there too. The c(4×4) looks the same along both [110] and [-110] azimuths. What is going on? Well the reconstruction’s unit cell is not aligned to the same directions as the (2×4). It is in fact centred on the original [100] and [010] directions of the (001) surface, which means it is at 45° to the (2×4) reconstruction.

The c(4×4) is composed of 1.75 ML of As on Ga. That  is a full ML of As plus another ¾ of a ML of As on top of that. This is significantly more As than the ¾ of a ML of the (2×4) reconstruction. The As of the upper ¾ ML of the c(4×4) are back bonded onto the As of the lower full ML, meaning that the As on the upper layer “sees” no Ga at all. Which more importantly means that the Ga in the buried layer is protected from contamination. The As dimers of the upper ¾ ML  arrange  themselves 3 abreast in a “brickwork pattern” and it is this arrangement that gives the pair of 2xs on the RHEED screen.

The c(4×4) is therefore perfect to pre-protect the epilayer. Once it has formed, simply ramp the substrate down to 0 °C  (or as low as you can go) and watch the RHEED. To get a more even As cap you can start the substrate rotation again now.

Once the substrate gets down below 100 °C you should find that the 2x is replaced by the 1x pattern shown in Figure 1c. This is because a thin amorphous As layer now exists on top of the c(4×4) and all you can see are the bulk lattice rods. As the amorphous As layer gets thicker, the RHEED beam can no longer penetrate through to the substrate and the RHEED pattern becomes the amorphous haze shown in figure 1d. This is probably somewhere around 5 – 10 nm thick. It may take >30 minutes from the moment the ramp down was started to the time the amorphous pattern is completed, depending on the background sample heating and the rate of cooling you can create inside your particular MBE chamber.

The As growth rate is highly temperature dependent. You want a final thickness of about 15 nm and from experience this takes about an additional 5 minutes after the amorphous RHEED has appeared. In order to get a more accurate estimate of the As cap growth rate, you can first create the c(4×4), then ramp down to 400°C, then turn off the As flux and leave the sample to equilibriate at 0°C  for half an hour, then apply the As flux and monitor the time it takes to create the amorphous pattern, then triple it. If you want to be really accurate with your cap thickness I suggest you perform cross sectional SEM on the sample and extract the cap thickness.

The As cap is not only useful to protect your epilayer ex situ, but can be used to perform two temperature calibrations at ~300 and ~400 °C  (in order to do that see my Making a static reconstruction map post.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s